数学科的考试从整体看,在贯彻“深化教育改革,全面推进素质教育”的方向上继续稳步向前推行,贯彻了“总体保持稳定,深化能力立意,积极改革创新”的指导思想。从
学生的反映来看,2003年高考数学题目偏难(特别是理科),尤其是最后几道大题。不过,数学老师们普遍认为这是一份好试卷:遵循了考纲和大纲,能紧扣《考试说明》,知识与能力并举,很好地考查了思维、运算、空间、应用、推理等几方面的能力,问题设计新颖、自然、平和,应用意识强。数学试卷的一个最重要的特点是“活”,几乎没有送分题,从第一题开始,便要求考生能灵活运用所学基础知识解答,一些综合性的题目更要求考生快速调动一些基础知识融会贯通地解答。在考查基础知识的同时,注重对数学思想方法和数学能力的考查,在强调综合性的同时,重视试题的多角度、多层次性。从试题结构来看,2003年的题型整体保持了2002年的结构特点,但稳中有变,题目的形式更趋于新颖、科学、合理和生动。从知识分布来看,代数、立体几何和平面解析几何所占分数的百分比与它们在教学中所占课时的百分比大致相同,代数共95分,约占63%;立体几何26分,约占17%;平面解析几何29分,约占20%。
1.试题特点
(1)突出对基础知识和主干知识的重点考查
大多数问题的入口都比较宽,起点不高。选择题和填空题都从中学数学的基础知识、重点内容、基本方法出发设计命题;解答题在考查数学基础知识的同时,注重对学科的内在联系和知识的综合、重点知识的考查,并达到了必要的深度,构成数学试题的主体,让不同层次的同学都能展示自身的综合素质和综合能力。
从内容来看,突出对主干知识的重点考查。代数部分重点考查函数、不等式、数列、三角函数等内容;立体几何重点考查直线与直线、直线与平面、平面与平面的关系;解析几何重点考查直线和圆锥曲线,特别是它们的位置关系。同时,试题还注意从学科的整体高度出发,注重各部分知识的综合性、相互联系及在各自发展过程中各部分知识间的纵向联系,在知识网络交汇点设计试题。
(2)对数学思想方法的考查更加深入
数学不仅仅是一门工具性的学科,更重要的是一种思维模式。高考数学试题一直注重对思想方法的考查,数学思想和方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中。因此,在高考试题中对数学思想和方法的考查与数学知识的考查结合进行,从学科整体意义和思想含义上立意,注意通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。试题中涉及到的基本数学思想方法主要有:等价转化思想方法、数学建模思想方法、函数与方程思想方法、数形结合思想方法、分类讨论思想方法、归纳法、整体思想方法、类比法、复数法 |